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ABSTRACT 

In this  note  it will be proved t h a t  the  threefold in C 4 which is given by 

x W x2y -~ z 2 + t 3 = 0 is not  isomorphic to C a . Here C is the  field of 

complex  numbers .  

1. I n t r o d u c t i o n  

It was first conjectured in print in 1979 (see [Kal]) that  an algebraic action 

on A s of a reductive algebraic group is linearizable, which means that  with an 

appropriate choice of coordinate system the action is linear. It is indeed so ([Kal]) 

for A2 and it is wrong for dimensions higher than three ([Sc]). It is still not clear 

what is the situation for A~. 

The simplest set-up for the linearizing conjecture is C* acting on C ~ which is of 

special interest (e.g. see survey [K]). This is the case which motivates this paper. 

Here it means that  with an appropriate choice of coordinate system the action 
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is given by (xl, x2 , . . . ,  xn) --* (~alxl, Aa2x2,..., Aa~Xn), where a~ are integers. 

It was proved for C 2 in [G] and it is still not known what is the situation for 

higher dimensions, though [Sc] contains an example of non-linearizable action of 

a semidirect product of C* and Z/2 on C 4. 

In a program outlined in [R1] for a clarification of the situation When C* acts on 

C 3, it is important to show that  the contractible threefolds which are described 

in [R1] (some of them were found earlier in [D]; see also [K1] for a description 

which is actually published) are not C 3. If any of these threefolds is C 3 we 

will have an example of non-linearizable C*-action (see [R1] and [K2]). (This 

will be checked below for our particular threefold.) On the other hand, if none 

of them is C 3 then some additional restrictions should take place for potential 

counterexamples, which raises the hope that  they do not exist (see [KR]). 

It was shown in tKML1], [ KML2] that some of these threefolds are not isomor- 

phic to C 3 and even do not admit dominant mappings from C 3. Unfortunately 

the technique which was developed there fails when dominant mappings exist. 

From an inspection of the list of relevant examples, the threefold V which is 

given by x + x 2 y  + z 2 + t 3 --- 0 looks like the most difficult to distinguish from C 3 . 

It is a smooth factorial affine variety (see [K3, Proposition 3.2]) which admits a 

dominant mapping from C 3 (as was noticed by Russell). In the two-dimensional 

setting this implies that  V is isomorphic to an affine space ([MS], [Ka2], and 

JR2]). It is also contractible, diffeomorphic to ~6 ([RI'], [K1]), and has negative 

Kodaira logarithmic dimension (see [I] for definition) as C 3 has. It is so close 

to C 3 that  were it to be C 3 it would serve as a counterexample not only to the 

linearizing conjecture but also to the Abhyankar-Sathaye conjecture ([A], [S]). 

So in a sense life would be much simpler if it would be C 3. 

Here is an explanation why an isomorphism between V and C 3 would lead 

to a counterexample to the linearizing conjecture. Let us assume that  V is 

isomorphic to C 3 and consider the action r which is given by (x, y, z , t )  --* 

(A6x,/~-6y, A3z, )~2t)" Let us furthermore assume that  r is linearizable. 

So with appropriate choice of coordinates the action is given by (u, v, w) 

(;~u,)~bv, )~Cw). Since x, y, z, and t are homogeneous relative to r and are 

not invariants of r it is clear that  they all belong to the augmentation ideal of 

C[u, v, w]. It is also clear that  the linear components of these polynomials should 

generate C[u, v, w]. So at least three of these polynomials must have a non-zero 

linear component. If x has a linear component then x + x2y  + z 2 + t 3 : 0 is 
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impossible because the linear component of x cannot be canceled. So the linear 

components of y, z, and t are independent and, since they are homogeneous 

(quasi-invariant) relative to our action, they can be used as generators u, v, w. 

This means that  a = - 6 ,  b = 3, and c =  2. It  is easy to check that  i f m i s  a 

monomial and r  = )~-6rn, or r  = )~3m, or r  -- A2m then m is divisible 

by u, or by v, or by w correspondingly. If r  = A6m then m is divisible either 

by v 2 or by W 3. So we see that  y = u y l ,  z = v z l ,  t = w t l ,  and x = v 2 x l  + w3x2 .  

Let us consider now the subring I of invariants of r It  is clear that  I = 

C[uv2 ,uw3] .  On the other hand I is generated by x y ,  y z  2, and y t  3 with x y  + 

(xy )2  + y z  2 + y t  3 -= O. So I = C[xy, y z  2] = C[xy ,  yt3]. Let us denote uv  2 by p and 

u w  3 by q. Then y z  2 = y l z ~ p  and y t  3 = y l t3q  and they are images of, say, p under 

some automorphisms of the polynomial ring C[p, q]. But from the structure of 

the automorphism group of a polynomial ring with two generators it follows at 

once that  if an image of p is divisible by p or q then it is c lp ,  correspondingly 

c2q, where cl, c2 e C (see [C]). So Yl, zl, tl e C and C[y, z ,  t] = C[u, v, w] which 

is impossible since x is not a polynomial of y, z, t. 

In this note I 'll prove that  V is not isomorphic to C 3 . In purely algebraic terms 

this means that  for P = x + x 2 y  + z 2 + t 3 the factor ring R = C[x, y,  z, t ] / ( P )  is 

not isomorphic to a polynomial ring in three variables. All the above-mentioned 

geometric motivations notwithstanding, I think that  the development of algebraic 

tools which allow one to distinguish rings (in commutative and non-commutative 

settings) is an interesting and important  problem in its own right. 

In order to prove the claim I 'll  assume that  R is isomorphic to C[u, v, w] and 

show tha t  under this assumption every derivation 0 on R satisfying the following 

properties: 

1. 0 is determined by a Jacobian, which means that  O(h) = J ( f ,  g, h) ,  where 

f ,  g E R and J denotes the determinant of the Jacobi matr ix  of f ,  g and 

h relative to u, v, w; 

2. 0 is locally nilpotent, which means that  for each r E R there exists an 

n = n ( r )  such that  O'S(r) = 0; 

has an additional property O ( X )  = 0 where X is the image of x in R. This can 

be easily brought to a contradiction. 
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2. L e m m a s  on  local ly  n i l p o t e n t  d e r i v a t i o n s  

A derivation 0 on a ring A is called locally nilpotent if for each a �9 A there exists 

an n = n(a) such that  On(a) = O. 

With the help of a locally nilpotent derivation acting on a ring A one can define 

a function deg 0 by dego(f)  -- min(niOn(f) = 0) - 1 if f �9 A is not zero and 

dega(O ) = -oo .  

LEMMA 1: I f  0 is a locally nilpotent nonzero derivation of a domain A then A 

has transcendence degree one over the subring A ~ of constants of 9, the field 

Frac(A) of fractions of A is a purely transcendental extension of Frac(A~ and 

A ~ is algebraically closed in A. 

Proo~ Since A r A a there exists a n r  �9 A \ A  ~ such that  O(r) �9 A ~ It  is 

easy to show by induction on dego(a ) = n that  there exist elements ai, b �9 A ~ 
n where i = 0 , 1 , . . . , n  and bao ~ 0 such that  ba = ~-~i=oairn-L So any two 

elements of A are algebraically dependent over A ~ while any element of A \ A ~ 

is transcendental over A ~ The remaining claim that  Frac(A) = Frac(A~ is 

also obvious. 

LEMMA 2: I f  A is a domain then deg o is a degree function, i.e. dego(a + b) _< 

max(dego(a) ,  dego(b)) and dego(ab ) = dego(a ) + dego(b ). 

Proof: Follows immediately from the presentation of elements of A in the proof 

of Lemma 1 since it is clear that  ~i~=o air n-~ has degree n if a0 r 0. 

Remark: This degree function (as any degree function) induces a filtration on 

A. It  also can be extended naturally to the field of fractions of A. Our main 

application will be that  if a product is a g-constant then each factor is also a 

g-constant. 

Let us denote by An the ring F[Xl ,X2, . . . , xn]  of polynomials. Then the 

Jacobian J ( f l ,  f 2 , . . . ,  fn) is a derivation in any argument. 

LEMMA 3: I f  O(h) = J ( f l , f 2 , . . . , f n - l , h )  is a nonzero locally nilpotent 

derivation of An and g l , g 2 , . - . , g n - 1  �9 A ~ then the derivation On-l(h) -- 

J(gl ,  92 , . . . ,  gn-1, h) is also locally nilpotent. 

Proof." It  is clear from the definition of 0 that  all fi E A ~ We may assume that  

the {9i} are algebraically independent because otherwise 0n-1 is zero. Under this 
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assumption one of the standard proofs for the basis theorem in linear algebra can 

be used (the so-called replacement proof). 

Let us show that  aO = an- - lOn- -1  for some a, an-1 C A ~ \ 0. It  is clear that  the 

{f~} are algebraically independent, and since the transcendence 

degree of An is n it follows from Lemma 1 that  the transcendence degree of 

A ~ is n - 1. So any n elements of A ~ are algebraically dependent. Let P1 be an 

irreducible polynomial from An for which P l ( f l ,  f 2 , . . . ,  f n - l , g l )  -- 0. We may 

assume up to renumbering the {f{} that  P1 depends on f l .  Then 

0 = J(P1, f 2 , . . . ,  f~- ! ,  h) 

= J ( f l , f 2 , .  , f n - l , h )  dp '  "" Of 1 + J(gl ' f2 '"  . , f n - l , h )  aP1 
�9 O g l  " 

So derivations 0 and 01, where 01(h) = J(gl, f 2 , . . . ,  fn-1, h), are proportional 

with coefficients from A ~ which are not zeros with our choice of P1. Now we may 

assume that  Oi(h) -- J(gl, g2 , . . . , g i ,  f i + l , . . . ,  fn-1 ,  h) is a nonzero derivation 

and that  Oi and 0 are proportional over A ~ Let us consider an irreducible 

polynomial Pi+l for which Pi+l(gl ,g2, . . . ,  gi, f i + l , . . . ,  f n - l , g i + l )  = 0. Since 

the elements gl, g2 , . . . ,  gi, f i + l , . . . ,  fn-1 are algebraically independent, such a 

polynomial exists and since the elements {g~} are algebraically independent this 

polynomial depends on at least one of the f ' s .  So up to renumbering we can 

replace fi+l by gi+l and obtain c9i+1, which is not zero and proportional to Oi 

over A ~ This proves the lemma. 

Remark: As we can see from the proof the derivations 0 and On- 1 have the same 

constants and even induce the same degree function, provided gl, g2,. �9 �9 �9 gn-1 

are algebraically independent. 

Let A be a ring with Z filtration {Ai} and let 0 be a derivation on A for 

which O(Ai) C Ai+k for a fixed k and all i. Let Gr(A) = ~ A i / A i _ l  be the 

corresponding graded ring and let h E Ai /Ai-1.  Let us write h = a + Ai-1 

where a E Ai. We can define a homomorphism 01 on Gr(A) which acts on h by 

01 (h) = O(a)+ Ai+k-1 C Ai+k/Ai+k-1 and then extend 01 on Gr(A) by linearity. 

It  is clear that  01 is a derivation of Gr(A). 

LEMMA 4: IfO is a locally nilpotent derivation on A then 01 is a locally nilpotent 

derivation on Gr(A). 

Proof: Let us denote by gr the natural  mapping of A into Gr(A). Let a E A. I t  

is clear that  either 01(gr(a)) = 0, which means that  a C Ai and O(a) E Ai+k-1 
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for some i, or 01(gr(a)) = gr(0(a)), which means that a E Ai and c)(a) E Ai+k 

for some i. Iterating this computation we see that either 0~(gr(a)) = 0 or 

0~(gr(a)) = gr(0~(a)). Since 0 is locally nilpotent it implies that  01 is locally 

nilpotent on all elements from gr(A) and therefore on Gr(A). 

3. Te c hn i c a l  l e m m a s  

LEMMA 5: Let Yl,Y2,.. .  ,Yn be a set of elements in A n - 1  = F [ X l , X 2 , . . .  ,Xn-1]  

which generate An_ 1 and let P be an irreducible polynomial relation between y 's. 

Let Pi be the corresponding partial derivatives of P and Ji be the Jacobians of 

Yl, Y2,. . . ,  Yn with Yi skipped. Then Ji = (-1) icPi  where c is a nonzero element 

of the ground field F. 

Proof: Since each xi can be expressed as a polynomial of y's it is clear that  

1 = J (x l ,  x 2 , . . . ,  xn-1) belongs to the ideal generated by J1, J 2 , . . . ,  Jn. So we 

see that  these Jacobians are relatively prime. Therefore we may assume with- 

out loss of generality that  J1 r 0. As in the proof of Lemma 3, by computing 

J(Y2,. . . ,  Yi-1, P, yi+l, . . . ,  y~) = 0 we obtain a relation PiJ1 + ( -1) iPiJ~ = 0. 

So J1 must divide P1 and Pi = (-1)idJi where - d  = P1/J1. It remains 

to show that  P 1 , P 2 , . . . , P ~  are relatively prime. (It should be obvious for a 

geometer.) Let us consider An = F[Y1, Y2,. . . ,  Y~]. Then the factor ring An/(P),  

where P = P(Y1, Y2,. . . ,  Y~), can be mapped onto An-1 by Yi --~ Yi and this 

mapping is an isomorphism since P is irreducible and the mapping is onto. 

Let X1, X 2 , . . . ,  Xn-1 be any preimages of xl,  x 2 , . . . ,  xn-1. Then we can write 

Y~ = fi + Pgi + p2hi where fi and gi are polynomials in X's. Therefore 

1 : J(Y1, Y2,. . . ,  Yn) -- E i L 1  g J ( f l , . . . ,  fi-1, P, f i+l , . . . ,  fn) (mod P).  But 

J ( f l , . . . ,  f~-l, P, f i+l , . . . ,  fn) : aiJ(X1, X2 , . . . ,  Xn-1, P) where ai E An. So 

n 

J ( X 1 , X 2 , . . . , X n - I , P )  E g i a ~  - 1 (rood P)  
i=l 

and since J(X1, X 2 , . . . ,  X~-I ,  P)  is a linear combination of P~'s they are rela- 

tively prime mod P as elements of An. So their images in An-1 are relatively 

prime. This means that  d is a nonzero element of the ground field. 

Remark: We may assume that  d : 1 since we can replace the x's by another 

set of generators. 
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LEMMA 6: Let Fn = F(Xl,X2,. . .  ,Xn). Assume that we have a degree function 

deg on Fn given by deg(xi) = di where di �9 Z and the corresponding Z filtration. 

Let B be a subring of Fn which contains m algebraically independent elements. 

Then Gr(B) contains m algebraically independent elements. 

Proof: Let us denote by gr(a) the image of a in Gr(Fn). Let us take a max- 

imal possible set of elements al,  a 2 , . . . , a k  E B for which the elements gr(a~) 

are algebraically independent. If k = m the lemma is proved. Otherwise 

let us take an element ak+l E B and elements ak+2 , . . . , an  E F~ so that  

J(a l ,a2 , . . . ,an)  ~ O. Let us introduce a function def on B \ 0 by def(r) = 

deg(r) - deg(J(a l ,  a2 , . . . ,  ak, r, ak+2, . . . ,  an)). This function is not identically 

oo on B and is bounded from below by ~-~.iCk+l(d~ - deg(a~)) + dk+l since 

deg(J(a l ,  a 2 , . . . ,  ak, r, ak+2, . . . ,  an)) _< ~ r  - d~) + deg(r) - dk+l. 

So we can find its minimum on B, say, at element s. 

The elements g r (a l ) , . . . , g r (ak ) ,g r ( s )  are algebraically dependent. So there 

exists a polynomial Q for which Q(g r ( a l ) , . . . ,  gr(ak), gr(s)) = 0. We may assume 

that it has minimal possible degree relative to the last variable. This degree is 

positive since g r ( a l ) , . . . ,  gr(ak) are algebraically independent. 

Let t = Q(al , . . . ,ak , s ) .  Clearly t r 0 (the elements a l , . . . , a k ,  s are 

algebraically independent since J(al, a2 , . . . ,  ak, s, ak+2, . . . ,  an) r 0). Now 

def(t) = deg(t) - deg(~-~Qs J(ax , a2 , . . . ,  ak, s, ak+2, . . . ,  an)) 

= def(s) + deg(t) - (deg(~Qs) + deg(s)). 

So if we show that  deg(-~q) + deg(s) > deg(t) we will get a contradiction because 

then def(t) < def(s). 

Let us present Q(al , . . . ,  ak, s) as the sum of monomials: Q(al , . . . ,  ak, s) = 

~--~i rni where i is a multi-index. As usual let Ad = { f  �9 Fnl deg(f)  _< d}. Let 

us choose minimal d for which Ad contains gr(mi) for all monomials in Q. Then 

the condition Q(gr (a l ) , . . . , g r (ak) ,g r ( s ) )  = 0 means that t = Q ( a l , . . . , a k ,  s) 

belongs to Ad-1 and so deg(t) < d. Our choice of Q also implies that  

~Qs (g r ( a l ) , . . . ,  gr(ak), gr(s)) r 0. 

It is clear now that  the monomials in ~ -  belong to A~-aeg(~) and 

deg(0~Q ( a l , . . . ,  ak, s)) = d - deg(s). 
t 2 ~  
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Therefore  d e g ( ~  ( a l , . . . ,  ak, s ) ) + d e g ( s )  -- d > deg(t).  This contradict ion shows 

tha t  k = m. 

Remark:  I t  is clear f rom the proof  tha t  an element a l  can be chosen arbi t rar i ly  

in B \ F .  

4. A p p l i c a t i o n  

We are going to check now tha t  for the polynomial  P -- x + x2y + z 2 § t 3 the 

factor  ring R :- C[x, y, z, t ] / (P)  is not isomorphic to a polynomial  ring in three  

variables. The  ring R can be identified with a subring of the field C3 = C(x, z, t) 

genera ted by x, z, t and (x + z 2 § t3)x -2.  We'll  be using this identification. 

Let us assume tha t  R is C[u, v, w] for some u, v, w C C3. Then  J~ . . . .  (x, z, t) = 

x 2 by L e m m a  5 and, by the chain rule, J~,v,w(f, g, h) -- x2j~,z , t ( f ,  g, h). So from 

now on all Jacobians  wi thout  subscripts  will be relative to x, z, and t. 

Each element  r C R is a Laurent  polynomial  in x with coefficients in C[z, t]. Let  

us introduce a degree function on C3 by deg(x) -- - 1  and deg(z) -- deg(t)  = 0. 

This  funct ion induces a fi l tration on C3. 

LEMMA 7: I f  f , g  E R and O(h) = x 2 J ( f , g ,  h) is a locally nilpotent  nonzero 

derivation on R,  then deg( f )  _< 0 and deg(g) ~ 0. 

Proof: We m a y  assume tha t  deg ( f )  > 0. Then  d r ( f )  = (gr (y ) )nxmf l ( z ,  t) where 

dr(y) = (z 2 + t3)x -2,  and n > 0, m _> 0. By L e m m a  3 we could replace f and g 

by any two algebraically independent  elements of A ~ without  changing proper t ies  

of 0. By  L e m m a  6 and R e m a r k  to L e m m a  6 (applied to B = R ~ we m a y  assume 

by replacing g if necessary tha t  dr(g) and d r ( f )  are algebraically independent .  So 

01(h) = x 2 j ( g r ( f ) ,  dr(g), h) is a non-tr ivial  derivation on Gr (R)  which is locally 

ni lpotent  on Gr (R)  by L e m m a  4 (with k = - 1 ) .  Since 01(dr( f ) )  = 0, by L e m m a  

2, a l (g r (y ) )  = al(X m) = Ol( f l )  = o. 

I f  m > 0 then  01(x) = 0 and in this case 01(z 2 + t 3) = 0. But  then 02(h) = 

x2J(x ,  z 2 + t 3, h) is also a ni lpotent  derivation on Gr (R)  (see L e m m a  3 again).  

This  would imply  t ha t  03(h) = Jz,t(z 2 + t 3, h) is a locally ni lpotent  derivat ion on 

C[z, t]. Since 03(z) = - 3 t  2 and 03(t) = 2z, the degrees of z and t induced by this 

der ivat ion should satisfy deg(z) - 1 = 2 deg(t) and deg(t)  - 1 = deg(z).  Hence 

deg(z)  = - 3  and deg(t)  = - 2  which is impossible. 

So we m a y  assume tha t  m = 0 and tha t  dr(g) is also not divisible by x because 

otherwise 01(x) = 0 and it would imply as above tha t  02 is locally ni lpotent .  
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Therefore  gr(g) = gr(y)kgl  (z, t). If  f l ,  gl E C then g r ( f )  and gr(g) are dependent  

cont ra ry  to our assumpt ion.  So one of t hem is not in C. Let  us denote  it by f2. 

By  L e m m a  3, 02(h) = x 2 j ( g r ( y ) ,  f2, h) is a ni lpotent  derivation of Gr (R) .  

Let  us denote  Gr (R)  by S and introduce a new degree function on S by 

deg(x)  = 0, deg(z) = 3, and deg(t)  = 2. To distinguish the f i l t rat ion which 

corresponds to this function from the previous one let us use the nota t ions  Gr l  

and gr 1. 

If  we define 03(h) = x2y(gr(y ) ,  gr l ( f2) ,  h), it is a nonzero derivat ion on G r l ( S )  

which is locally ni lpotent  by L e m m a  4. Since gr l ( f2  ) is a homogeneous  form 

from C[z,t] it has as a factor ei ther z, or t, or z 2 + c t  3 where c E C. Since 

03(gr l ( f2))  = 0 we see f rom L e m m a  2 tha t  either 03(z) = 0, or 03(t) = 0, 

or 03(z 2 + ct 3) = 0. Therefore by L e m m a  3 one of the derivations 04(h) = 

x 2 j ( g r ( y ) ,  z, h) or 05(h) = x 2 j ( g r ( y ) ,  t, h) or 06(h) = x 2 j ( g r ( y ) ,  z 2 + ct 3, h) is 

locally nilpotent .  

Now 

04(x) = - 3 t  2, 04(z) = 0, 04(t) = - 2 g r ( y ) x ;  

05(x) = 2z, Oh(z) = 2gr (y)x ,  05(t) = 0; 

06(x) = 6 ( c -  1)zt 2, 06(z) = 6cgr (y )x t  2, 06(t) = - 4 g r ( y ) x z  

and we m a y  assume tha t  c r 0 and tha t  c r 1. 

Let  us denote  by d~, dz, and dt the degrees of x, z, and t induced by these 

derivations.  Then  taking into account tha t  the degree of gr(y) is zero, we'll obta in  

correspondingly:  

dx - 1 = 2dr, dz = 0, and dt - 1 = dx; 

dx - 1 -- dz, dz - 1 = d~, and dt = 0; 

dx - 1 = dz + 2dr, dz - 1 = d~ + 2dr, and dt - 1 = d~ + dz. 

These sys tems  do not have nonnegat ive solutions, so these derivations are not 

locally ni lpotent .  

This  finishes the proof  of the lemma.  

LEMMA 8: I f  O(h) = x 2 j ( f ,  g, h) is a locally ni lpotent  nonzero del"ivation on R 

then O(x) = O. 

Proof'. Since f ,  g E C[x, z, t] by the previous lemma,  O(h) is a locally ni lpotent  

nonzero derivat ion on C[x, z, t]. I f  deg is the degree function induced by this 
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derivation and O(h) ~ 0 then deg(0(h)) >_ 2deg(x). So deg(x) must be equal to 

zero. 

To get the final contradiction let us use again Jacobians relative to u, v, and 

w. I t  is clear that  each of the derivations 01(h) = J (u ,  v, h), 02(h) = J ( u , w ,  h), 

and 03(h) = J(w,  v, h) is nonzero and locally nilpotent and that  only complex 

numbers are common constants of these derivations. Since x r C our assumption 

that  R = C[u, v, w] is wrong. 

Added in proofs: The author found out that  Lemma 2 appeared as Lemma 2 in 

the paper  of M. Ferrero, Y. Lequian and A. Nowicki, A note  on locally n i lpo ten t  

derivations,  Journal of Pure and Applied Algebra 79 (1992), 45-50. 
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