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ABSTRACT

In this note it will be proved that the threefold in C* which is given by
z + 22y 4+ z2 + t3 = 0 is not isomorphic to C3. Here C is the field of

complex numbers.

1. Introduction

It was first conjectured in print in 1979 (see [Kal]) that an algebraic action
on A" of a reductive algebraic group is linearizable, which means that with an
appropriate choice of coordinate system the action is linear. It is indeed so ([Kal])
for A% and it is wrong for dimensions higher than three ([Sc]). It is still not clear

what is the situation for AZ.

The simplest set-up for the linearizing conjecture is C* acting on C* which is of
special interest (e.g. see survey [K]). This is the case which motivates this paper.
Here it means that with an appropriate choice of coordinate system the action
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is given by (z1,%2,...,2n) = (A" x1, A\*222,...,A%"2,), where a; are integers.
It was proved for C? in [G] and it is still not known what is the situation for
higher dimensions, though [Sc] contains an example of non-linearizable action of
a semidirect product of C* and Z/2 on C*.

In a program outlined in [R1] for a clarification of the situation when C* acts on
C3, it is important to show that the contractible threefolds which are described
in [R1]} (some of them were found earlier in [D]; see also [K1] for a description
which is actually published) are not C3. If any of these threefolds is C® we
will have an example of non-linearizable C*-action (see [R1] and [K2]). (This
will be checked below for our particular threefold.) On the other hand, if none
of them is C* then some additional restrictions should take place for potential
counterexamples, which raises the hope that they do not exist (see [KR]).

It was shown in [KML1], [ KML2] that some of these threefolds are not isomor-
phic to C® and even do not admit dominant mappings from C3. Unfortunately
the technique which was developed there fails when dominant mappings exist.

From an inspection of the list of relevant examples, the threefold V' which is
given by z+ 22y + 2% +t3 = 0 looks like the most difficult to distinguish from C3.
It is a smooth factorial affine variety (see [K3, Proposition 3.2]) which admits a
dominant mapping from C* (as was noticed by Russell). In the two-dimensional
setting this implies that V is isomorphic to an affine space ([MS], [Ka2], and
[R2]). Tt is also contractible, diffeomorphic to R® ([R1], [K1]), and has negative
Kodaira logarithmic dimension (see [I] for definition) as C* has. It is so close
to C? that were it to be C? it would serve as a counterexample not only to the
linearizing conjecture but also to the Abhyankar—Sathaye conjecture ([A], [S]).
So in a sense life would be much simpler if it would be C3.

Here is an explanation why an isomorphism between V and C® would lead
to a counterexample to the linearizing conjecture. Let us assume that V is
isomorphic to C® and consider the action ¢ which is given by (z,y,z,t) —
(A8, A~6y, A3z, \%t). Let us furthermore assume that ¢ is linearizable.

So with appropriate choice of coordinates the action is given by (u,v,w) —
(A%u, Abu, A°w). Since z, y, z, and ¢t are homogeneous relative to ¢ and are
not invariants of ¢ it is clear that they all belong to the augmentation ideal of
Clu, v, w]. It is also clear that the linear components of these polynomials should
generate Clu, v, w]. So at least three of these polynomials must have a non-zero

linear component. If x has a linear component then = + 2y + 22+ 13 =0 is
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impossible because the linear component of x cannot be canceled. So the linear
components of y, z, and ¢ are independent and, since they are homogeneous
(quasi-invariant) relative to our action, they can be used as generators u,v, w.
This means that a = —6, b = 3, and ¢ = 2. It is easy to check that if m is a
monomial and ¢(m) = A~%m, or (m) = A3m, or #(m) = A?m then m is divisible
by w, or by v, or by w correspondingly. If ¢(m) = A®m then m is divisible either
by v? or by w3. So we see that y = uy;, z = vz, t = wity, and z = vir; + wiz,.

Let us consider now the subring I of invariants of ¢. It is clear that I =
Cluv?,uw®]. On the other hand I is generated by zy, yz%, and yt3 with zy +
(zy)?+yz2 +yt3 = 0. So I = C[zy, yz?] = Clzy, yt3]. Let us denote uv? by p and
uw? by ¢. Then yz? = y,22p and yt3 = y,t3q and they are images of, say, p under
some automorphisms of the polynomial ring C[p,q]. But from the structure of
the automorphism group of a polynomial ring with two generators it follows at
once that if an image of p is divisible by p or g then it is ¢;p, correspondingly
c2q, where c1, ¢y € C (see [C]). So y1, 21,t1 € C and Cly, z,t] = Clu, v, w] which
is impossible since x is not a polynomial of ¥, z, .

In this note I'll prove that V is not isomorphic to C3. In purely algebraic terms
this means that for P = z + x2y + z% + 3 the factor ring R = Clz, y, 2, t]/(P) is
not isomorphic to a polynomial ring in three variables. All the above-mentioned
geometric motivations notwithstanding, I think that the development of algebraic
tools which allow one to distinguish rings (in commutative and non-commutative
settings) is an interesting and important problem in its own right.

In order to prove the claim I’ll assume that R is isomorphic to Clu, v, w] and
show that under this assumption every derivation 9 on R satisfying the following
properties:

1. 0 is determined by a Jacobian, which means that d(h) = J(f, g, h), where
f,9 € R and J denotes the determinant of the Jacobi matrix of f, ¢ and
h relative to u, v, w;

2. @ is locally nilpotent, which means that for each r € R there exists an
n = n(r) such that 8" (r) = 0;

has an additional property 8(X) = 0 where X is the image of # in R. This can
be easily brought to a contradiction.
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2. Lemmas on locally nilpotent derivations

A derivation 8 on a ring A is called locally nilpotent if for each a € A there exists
an n = n(a) such that 8" (a) = 0.

With the help of a locally nilpotent derivation acting on a ring A one can define
a function degy by degy(f) = min(n|d™(f) = 0) — 1 if f € A is not zero and
degy(0) = —o0.

LEMMA 1: If d is a locally nilpotent nonzero derivation of a domain A then A
has transcendence degree one over the subring A? of constants of 8, the field
Frac(A) of fractions of A is a purely transcendental extension of Frac(A?), and

A9 is algebraically closed in A.

Proof: Since A # A? there exists an r € A A% such that 9(r) € A%. It is
easy to show by induction on degy(a) = n that there exist elements a;, b € A?
where ¢ = 0,1,...,n and bag # 0 such that ba = E?:o a;r™"%. So any two
elements of A are algebraically dependent over A2 while any element of 4 ~ A2
is transcendental over A%. The remaining claim that Frac(4) = Frac(A%)(r) is

also obvious.

LEMMA 2: If A is a domain then degy is a degree function, i.e. degg(a + b) <
max(degy(a), degy (b)) and degy(ab) = degy(a) + degy(b).

Proof: Follows immediately from the presentation of elements of A in the proof

of Lemma 1 since it is clear that ) ., a;v™* has degree n if ag # 0.

Remark: This degree function (as any degree function) induces a filtration on
A. Tt also can be extended naturally to the field of fractions of A. Our main
application will be that if a product is a J-constant then each factor is also a

d-constant.

Let us denote by A, the ring F[zi,z9,...,2,] of polynomials. Then the
Jacobian J(f1, f2,.- ., fn) is a derivation in any argument.

Lemma 3: If 8(h) = J(f1,fa,.--,fa-1,h) Is a nonzero locally nilpotent
derivation of A, and ¢1,92,...,9n-1 € Ag, then the derivation 3,_1(h) =
J(g1,92,...,9n-1,h) Iis also locally nilpotent.

Proof: Tt is clear from the definition of 8 that all f; € A2. We may assume that
the {g;} are algebraically independent because otherwise d,_ is zero. Under this
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assumption one of the standard proofs for the basis theorem in linear algebra can
be used (the so-called replacement proof).

Let us show that ad = a,,_10,,_1 for some a,a,_1 € Ag N 0. It is clear that the
{fi} are algebraically independent, and since the transcendence
degree of A, is n it follows from Lemma 1 that the transcendence degree of
A2 is n — 1. So any n elements of A? are algebraically dependent. Let P; be an
irreducible polynomial from A, for which Pi(f1, f2,---, fa-1,91) = 0. We may
assume up to renumbering the {f;} that P; depends on f;. Then

0=J(P1af2,"-1fn—lah)

6P1 6P1
=J(f1,fo, s faot, ) =— + J(91, f2,- -+ f—1, B) —.
(f1 fo fno1 )3f1 (91 fe fn-1 )8g1

So derivations d and 8y, where 81(h) = J{(g1, f2,..., fn—1,h), are proportional
with coefficients from A2 which are not zeros with our choice of P,. Now we may
assume that 8;(k) = J(g1,92,---,9i fit1s--+» fa—1,P) I8 a nonzero derivation
and that 8; and & are proportional over A2. Let us consider an irreducible
polynomial P;; for which Piy1(g1,92,---59i, fi+1,-- -+ fa—1,9i+1) = 0. Since
the elements g¢1,9s,- .-, 9i, fi+1,---» fn—t are algebraically independent, such a
polynomial exists and since the elements {g;} are algebraically independent this
polynomial depends on at least one of the f’s. So up to renumbering we can
replace fi+1 by g;y1 and obtain 8;14, which is not zero and proportional to ;
over A2. This proves the lemma.

Remark: As we can see from the proof the derivations @ and 8,,_.; have the same
constants and even induce the same degree function, provided ¢1,¢932,...,...,9n_1
are algebraically independent.

Let A be a ring with Z filtration {A;} and let 3 be a derivation on A for
which 9(A;) C Aij4i for a fixed k and all i. Let Gr(A4) = @ A;/Ai—; be the
corresponding graded ring and let A € A;/A;—;. Let us write h = a + A;_;
where a € A;. We can define a homomorphism 8, on Gr{A) which acts on h by
01(h) = 0(a)+ Aiyk—1 € Aitr/Aitk—1 and then extend 9; on Gr(A) by linearity.
It is clear that d; is a derivation of Gr(A).

LEMMA 4: If0 is a locally nilpotent derivation on A then 8, is a locally nilpotent
derivation on Gr(A).

Proof: Let us denote by gr the natural mapping of A into Gr(A4). Let a € A. It
is clear that either 9;(gr(a)) = 0, which means that a € 4; and 8(a) € A; 5,
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for some i, or 9;(gr(a)) = gr(8(a)), which means that a € A; and d(a) € A;yx
for some 7. Iterating this computation we see that either 87(gr(a)) = 0 or
07 (gr(a)) = gr(d™(a)). Since 9 is locally nilpotent it implies that 9, is locally
nilpotent on all elements from gr(A) and therefore on Gr(A).

3. Technical lemmas

LEMMA 5: Let y1,y2,...,yn be a set of elements in A,—1 = Flz1,22,...,Zn-1]
which generate A, -1 and let P be an irreducible polynomial relation between y’s.
Let P; be the corresponding partial derivatives of P and J; be the Jacobians of

Y1,Y2, - -, Yn With y; skipped. Then J; = (—1)'cP; where c is a nonzero element
of the ground field F'.

Proof: Since each z; can be expressed as a polynomial of y’s it is clear that
1= J(z1,z2,...,%n—1) belongs to the ideal generated by Ji,J2,...,Jn. So we
see that these Jacobians are relatively prime. Therefore we may assume with-
out loss of generality that J; # 0. As in the proof of Lemma 3, by computing
J(Wa, ... Y1, P,Yis1,---,Yn) = O we obtain a relation P,J; + (=1)'PyJ; = 0.
So J; must divide P, and P; = (—1)'dJ; where —d = P;/J;. It remains
to show that Py, Ps,..., P, are relatively prime. (It should be obvious for a
geometer.) Let us consider A, = F[Y},Y5,...,Y,]. Then the factor ring A, /(P),
where P = P(Y1,Y,,...,Y,), can be mapped onto A,-1 by Y; — y; and this
mapping is an isomorphism since P is irreducible and the mapping is onto.
Let X1, Xa,...,X,—1 be any preimages of z,z2,...,2,-1. Then we can write
Y; = f; + Pg; + P%h; where f; and g¢; are polynomials in X’s. Therefore
1=J,Ys,....Ys) =30 6J(f1s---, fi-1, P, fix1,- .. fa)  (mod P). But
J(f1y- s fim1s P, fig1y - o5 fo) = @i J (X1, Xo, . .., Xn—1, P) where a; € A,. So

J(X1,X2,...,Xn-1,P)) giai=1 (mod P)
=1

and since J(X1, Xa,..., Xn-1,P) is a linear combination of P;’s they are rela-
tively prime mod P as elements of A,. So their images in A,,_; are relatively
prime. This means that d is a nonzero element of the ground field.

Remark: We may assume that d = 1 since we can replace the z’s by another
set of generators.
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LEMMA 6: Let F,, = F(z1,%s,...,2,). Assume that we have a degree function
deg on F,, given by deg(x;) = d; where d; € Z and the corresponding Z filtration.
Let B be a subring of F,, which contains m algebraically independent elements.
Then Gr(B) contains m algebraically independent elements.

Proof: Let us denote by gr(a) the image of ¢ in Gr(F,,). Let us take a max-
imal possible set of elements ay,az,...,ax € B for which the elements gr(a;)
are algebraically independent. If k& = m the lemma is proved. Otherwise
let us take an element ary1 € B and elements agy2,...,a, € F, so that
J(a1,ag,...,a,) # 0. Let us introduce a function def on B0 by def(r) =
deg(r) — deg(J(a1,as,...,0k, T, @k42,.-.,0n)). This function is not identically
oo on B and is bounded from below by 37, .,(di — deg(a;)) + di+1 since
deg(J(a1,az, ..., 0k, Ty Qki2s- -5 0p)) < Z#Hl(deg(ai) —d;) + deg(r) — dpy1.
So we can find its minimum on B, say, at element s.

The elements gr(a;),....gr(ax),gr(s) are algebraically dependent. So there
exists a polynomial @ for which Q(gr(a;), ..., gr(ax),gr(s)) = 0. We may assume
that it has minimal possible degree relative to the last variable. This degree is

positive since gr(ai),...,gr(ax) are algebraically independent.
Let t = Q(ai1,...,ar,s). Clearly ¢ # 0 (the elements ay,...,ax,s are
algebraically independent since J(ay,as,...,ak, S, k42 - - -, @) # 0). Now

def(t) = deg(t) — deg(%](al,az, ey Qs Sy Qg 2y« -5 Q)
= def(s) + deg(t) — (deg(%QS—) + deg(s)).

So if we show that deg(%) +deg(s) > deg(t) we will get a contradiction because
then def(t) < def(s).

Let us present Q(ay,...,ax,s) as the sum of monomials: Q(ay,...,ax,s) =
>_i™i where i is a multi-index. As usual let Ay = {f € F,|deg(f) < d}. Let
us choose minimal d for which A4 contains gr(m;) for all monomials in Q. Then
the condition Q(gr(ay),...,gr(ar),gr(s)) = 0 means that t = Q(ay,...,ax,s)
belongs to Ag_1 and so deg(t) < d. Our choice of @ also implies that

0Q
Es—(gr(al), ..., gr(ax), gr(s)) # 0.
It is clear now that the monomials in %?% belong to Ad_deg(s) and

0
de(52 (@, ... ax,5)) = d - deg(s).



426 L. MAKAR-LIMANOV Isr. J. Math.

Therefore deg(%(al, ..,y $))+deg(s) = d > deg(t). This contradiction shows
that £k = m.

Remark: It is clear from the proof that an element a; can be chosen arbitrarily
in BNF.

4, Application

We are going to check now that for the polynomial P = & + z2y + 22 + t3 the
factor ring R = C[z,y, z,t]/(P) is not isomorphic to a polynomial ring in three
variables. The ring R can be identified with a subring of the field C3 = C(z, z,t)
generated by z, z,¢ and (z + 22 + t3)z 2. We'll be using this identification.

Let us assume that R is Clu, v, w] for some u,v,w € C3. Then Jy 4, .,(z, 2,t) =
z? by Lemma 5 and, by the chain rule, Juww(fr9,h) = 22T 2 1(f, 9, h). So from
now on all Jacobians without subscripts will be relative to z, z, and ¢.

Each element 7 € R is a Laurent polynomial in & with coefficients in C[z, t]. Let
us introduce a degree function on Cs by deg(z) = —1 and deg(z) = deg(t) = 0.

This function induces a filtration on Cs.

LEMMA 7: If f,g € R and 8(h) = z%J(f,g,h) is a locally nilpotent nonzero
derivation on R, then deg(f) < 0 and deg(g) < 0.

Proof: 'We may assume that deg(f) > 0. Then gr(f) = (gr(y)) 2™ f1(z,t) where
gr(y) = (22 + 3)z7% and n > 0, m > 0. By Lemma 3 we could replace f and ¢
by any two algebraically independent elements of A® without changing properties
of 8. By Lemma 6 and Remark to Lemma 6 (applied to B = R?) we may assume
by replacing g if necessary that gr(g) and gr(f) are algebraically independent. So
d1(h) = x2J(gr(f), gr(g), h) is a non-trivial derivation on Gr(R) which is locally
nilpotent on Gr(R) by Lemma 4 (with k£ = —1). Since 8, (gr(f)) = 0, by Lemma
2, 91(gr(y)) = 01(z™) = 01(f1) = 0.

If m > 0 then 81(z) = 0 and in this case 9;(z% + ) = 0. But then 9;(h) =
z2J(z, 2% + 3, h) is also a nilpotent derivation on Gr(R) (see Lemma 3 again).
This would imply that d3(h) = J, (2% +¢3, h) is a locally nilpotent derivation on
Clz,t]. Since 85(z) = —3t? and 5(t) = 22, the degrees of z and ¢ induced by this
derivation should satisfy deg(z) — 1 = 2deg(t) and deg(t) — 1 = deg(z). Hence
deg(z) = —3 and deg(t) = —2 which is impossible.

So we may assume that m = 0 and that gr(g) is also not divisible by z because
otherwise 8;(z) = 0 and it would imply as above that 8, is locally nilpotent.
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Therefore gr(g) = gr(y)*g1(z,t). If f1,91 € C then gr(f) and gr(g) are dependent
contrary to our assumption. So one of them is not in C. Let us denote it by fs.
By Lemma 3, 82(h) = z2J(gr(y), fa, h) is a nilpotent derivation of Gr(R).

Let us denote Gr(R) by S and introduce a new degree function on S by
deg(x) = 0, deg(z) = 3, and deg(t) = 2. To distinguish the filtration which
corresponds to this function from the previous one let us use the notations Gry
and gr;.

If we define 85(h) = z2J(gr(y), gr1(f2), k), it is a nonzero derivation on Gry(S)
which is locally nilpotent by Lemma 4. Since gr;(f2) is a homogeneous form
from C[z,t] it has as a factor either 2, or ¢, or z2 + ct> where ¢ € C. Since
93(gr;(f2)) = 0 we see from Lemma 2 that either d3(z) = 0, or 93(t) = 0,
or 83(22 + ct®) = 0. Therefore by Lemma 3 one of the derivations 84(h) =
22J(gr(y), z,h) or 85(h) = z2J(gr(y),t,h) or ds(h) = z2J(gr(y), 2% + ct3,h) is
locally nilpotent.

Now
d4(z) = —3t%, 04(2) =0, 04(t) = =2 gr(y)x;
O5(z) = 2z, 05(z) = 2 gr(y)x, d5(t) = 0;
ds(x) = 6(c — 1)zt?,  95(z) = 6egr(y)zt®, 06(t) = —4gr(y)zz

and we may assume that ¢ # 0 and that ¢ # 1.
Let us denote by d,, d,, and d; the degrees of z, z, and ¢ induced by these
derivations. Then taking into account that the degree of gr(y) is zero, we’ll obtain

correspondingly:
dz_1:2dt, dz=0, anddt—lzdz;
dz_lzd27 dzv]-:dm, anddt=0;

de —1=d,+2dy, d,—1=d;+2d;, anddi—1=d,+d,.

These systems do not have nonnegative solutions, so these derivations are not
locally nilpotent.
This finishes the proof of the lemma.

LEMMA 8: If 8(h) = z%J(f, g, h) is a locally nilpotent nonzero derivation on R
then 8(x) = 0.

Proof: Since f, g € Clz, 2,t] by the previous lemma, 3(h) is a locally nilpotent

nonzero derivation on Clz, 2,t]. If deg is the degree function induced by this
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derivation and 9(h) # 0 then deg(d(h)) > 2deg(z). So deg(x) must be equal to
Zero.

To get the final contradiction let us use again Jacobians relative to u, v, and
w. It is clear that each of the derivations ;(h) = J(u,v, h), d2(h) = J(u,w, h),
and 93(h) = J(w,v,h) is nonzero and locally nilpotent and that only complex
numbers are common constants of these derivations. Since x ¢ C our assumption

that R = Clu, v, w] is wrong.

Added in proofs: The author found out that Lemma 2 appeared as Lemma, 2 in
the paper of M. Ferrero, Y. Lequian and A. Nowicki, A note on locally nilpotent
derivations, Journal of Pure and Applied Algebra 79 (1992), 45-50.
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