ISRAEL JOURNAL OF MATHEMATICS 96 (1996), 419-429

ON THE HYPERSURFACE $x + x^2y + z^2 + t^3 = 0$ IN C⁴ OR A C³-LIKE THREEFOLD WHICH IS NOT C³

ΒY

L. MAKAR-LIMANOV

Department of Mathematics and Computer Science, Bar-Ilan University 52900 Ramat-Gan, Israel

and

Department of Mathematics, Wayne State University Detroit, MI 48202, USA e-mail: lml@bimacs.cs.biu.ac.il

To the memory of Shimshon Amitsur

ABSTRACT

In this note it will be proved that the threefold in \mathbb{C}^4 which is given by $x + x^2y + z^2 + t^3 = 0$ is not isomorphic to \mathbb{C}^3 . Here \mathbb{C} is the field of complex numbers.

1. Introduction

It was first conjectured in print in 1979 (see [Ka1]) that an algebraic action on \mathbb{A}^n of a reductive algebraic group is linearizable, which means that with an appropriate choice of coordinate system the action is linear. It is indeed so ([Ka1]) for \mathbb{A}^2 and it is wrong for dimensions higher than three ([Sc]). It is still not clear what is the situation for \mathbb{A}^3 .

The simplest set-up for the linearizing conjecture is \mathbb{C}^* acting on \mathbb{C}^n which is of special interest (e.g. see survey [K]). This is the case which motivates this paper. Here it means that with an appropriate choice of coordinate system the action

Received March 13, 1995

is given by $(x_1, x_2, \ldots, x_n) \to (\lambda^{a_1} x_1, \lambda^{a_2} x_2, \ldots, \lambda^{a_n} x_n)$, where a_i are integers. It was proved for \mathbb{C}^2 in [G] and it is still not known what is the situation for higher dimensions, though [Sc] contains an example of non-linearizable action of a semidirect product of \mathbb{C}^* and $\mathbb{Z}/2$ on \mathbb{C}^4 .

In a program outlined in [R1] for a clarification of the situation when \mathbb{C}^* acts on \mathbb{C}^3 , it is important to show that the contractible threefolds which are described in [R1] (some of them were found earlier in [D]; see also [K1] for a description which is actually published) are not \mathbb{C}^3 . If any of these threefolds is \mathbb{C}^3 we will have an example of non-linearizable \mathbb{C}^* -action (see [R1] and [K2]). (This will be checked below for our particular threefold.) On the other hand, if none of them is \mathbb{C}^3 then some additional restrictions should take place for potential counterexamples, which raises the hope that they do not exist (see [KR]).

It was shown in [KML1], [KML2] that some of these threefolds are not isomorphic to \mathbb{C}^3 and even do not admit dominant mappings from \mathbb{C}^3 . Unfortunately the technique which was developed there fails when dominant mappings exist.

From an inspection of the list of relevant examples, the threefold V which is given by $x + x^2y + z^2 + t^3 = 0$ looks like the most difficult to distinguish from \mathbb{C}^3 . It is a smooth factorial affine variety (see [K3, Proposition 3.2]) which admits a dominant mapping from \mathbb{C}^3 (as was noticed by Russell). In the two-dimensional setting this implies that V is isomorphic to an affine space ([MS], [Ka2], and [R2]). It is also contractible, diffeomorphic to \mathbb{R}^6 ([R1], [K1]), and has negative Kodaira logarithmic dimension (see [I] for definition) as \mathbb{C}^3 has. It is so close to \mathbb{C}^3 that were it to be \mathbb{C}^3 it would serve as a counterexample not only to the linearizing conjecture but also to the Abhyankar–Sathaye conjecture ([A], [S]). So in a sense life would be much simpler if it would be \mathbb{C}^3 .

Here is an explanation why an isomorphism between V and \mathbb{C}^3 would lead to a counterexample to the linearizing conjecture. Let us assume that V is isomorphic to \mathbb{C}^3 and consider the action ϕ which is given by $(x, y, z, t) \rightarrow$ $(\lambda^6 x, \lambda^{-6} y, \lambda^3 z, \lambda^2 t)$. Let us furthermore assume that ϕ is linearizable.

So with appropriate choice of coordinates the action is given by $(u, v, w) \rightarrow (\lambda^a u, \lambda^b v, \lambda^c w)$. Since x, y, z, and t are homogeneous relative to ϕ and are not invariants of ϕ it is clear that they all belong to the augmentation ideal of $\mathbb{C}[u, v, w]$. It is also clear that the linear components of these polynomials should generate $\mathbb{C}[u, v, w]$. So at least three of these polynomials must have a non-zero linear component. If x has a linear component then $x + x^2y + z^2 + t^3 = 0$ is

impossible because the linear component of x cannot be canceled. So the linear components of y, z, and t are independent and, since they are homogeneous (quasi-invariant) relative to our action, they can be used as generators u, v, w. This means that a = -6, b = 3, and c = 2. It is easy to check that if m is a monomial and $\phi(m) = \lambda^{-6}m$, or $\phi(m) = \lambda^3 m$, or $\phi(m) = \lambda^2 m$ then m is divisible by u, or by v, or by w correspondingly. If $\phi(m) = \lambda^6 m$ then m is divisible either by v^2 or by w^3 . So we see that $y = uy_1$, $z = vz_1$, $t = wt_1$, and $x = v^2x_1 + w^3x_2$.

Let us consider now the subring I of invariants of ϕ . It is clear that $I = \mathbb{C}[uv^2, uw^3]$. On the other hand I is generated by xy, yz^2 , and yt^3 with $xy + (xy)^2 + yz^2 + yt^3 = 0$. So $I = \mathbb{C}[xy, yz^2] = \mathbb{C}[xy, yt^3]$. Let us denote uv^2 by p and uw^3 by q. Then $yz^2 = y_1z_1^2p$ and $yt^3 = y_1t_1^3q$ and they are images of, say, p under some automorphisms of the polynomial ring $\mathbb{C}[p,q]$. But from the structure of the automorphism group of a polynomial ring with two generators it follows at once that if an image of p is divisible by p or q then it is c_1p , correspondingly c_2q , where $c_1, c_2 \in \mathbb{C}$ (see [C]). So $y_1, z_1, t_1 \in \mathbb{C}$ and $\mathbb{C}[y, z, t] = \mathbb{C}[u, v, w]$ which is impossible since x is not a polynomial of y, z, t.

In this note I'll prove that V is not isomorphic to \mathbb{C}^3 . In purely algebraic terms this means that for $P = x + x^2y + z^2 + t^3$ the factor ring $R = \mathbb{C}[x, y, z, t]/(P)$ is not isomorphic to a polynomial ring in three variables. All the above-mentioned geometric motivations notwithstanding, I think that the development of algebraic tools which allow one to distinguish rings (in commutative and non-commutative settings) is an interesting and important problem in its own right.

In order to prove the claim I'll assume that R is isomorphic to $\mathbb{C}[u, v, w]$ and show that under this assumption every derivation ∂ on R satisfying the following properties:

- 1. ∂ is determined by a Jacobian, which means that $\partial(h) = J(f, g, h)$, where $f, g \in R$ and J denotes the determinant of the Jacobi matrix of f, g and h relative to u, v, w;
- 2. ∂ is locally nilpotent, which means that for each $r \in R$ there exists an n = n(r) such that $\partial^n(r) = 0$;

has an additional property $\partial(X) = 0$ where X is the image of x in R. This can be easily brought to a contradiction.

2. Lemmas on locally nilpotent derivations

A derivation ∂ on a ring A is called locally nilpotent if for each $a \in A$ there exists an n = n(a) such that $\partial^n(a) = 0$.

With the help of a locally nilpotent derivation acting on a ring A one can define a function deg_{∂} by deg_{∂}(f) = min(n| ∂ ⁿ(f) = 0) - 1 if f \in A is not zero and deg_{∂}(0) = - ∞ .

LEMMA 1: If ∂ is a locally nilpotent nonzero derivation of a domain A then A has transcendence degree one over the subring A^{∂} of constants of ∂ , the field $\operatorname{Frac}(A)$ of fractions of A is a purely transcendental extension of $\operatorname{Frac}(A^{\partial})$, and A^{∂} is algebraically closed in A.

Proof: Since $A \neq A^{\partial}$ there exists an $r \in A \smallsetminus A^{\partial}$ such that $\partial(r) \in A^{\partial}$. It is easy to show by induction on $\deg_{\partial}(a) = n$ that there exist elements $a_i, b \in A^{\partial}$ where i = 0, 1, ..., n and $ba_0 \neq 0$ such that $ba = \sum_{i=0}^{n} a_i r^{n-i}$. So any two elements of A are algebraically dependent over A^{∂} while any element of $A \smallsetminus A^{\partial}$ is transcendental over A^{∂} . The remaining claim that $\operatorname{Frac}(A) = \operatorname{Frac}(A^{\partial})(r)$ is also obvious.

LEMMA 2: If A is a domain then \deg_{∂} is a degree function, i.e. $\deg_{\partial}(a+b) \leq \max(\deg_{\partial}(a), \deg_{\partial}(b))$ and $\deg_{\partial}(ab) = \deg_{\partial}(a) + \deg_{\partial}(b)$.

Proof: Follows immediately from the presentation of elements of A in the proof of Lemma 1 since it is clear that $\sum_{i=0}^{n} a_i r^{n-i}$ has degree n if $a_0 \neq 0$.

Remark: This degree function (as any degree function) induces a filtration on A. It also can be extended naturally to the field of fractions of A. Our main application will be that if a product is a ∂ -constant then each factor is also a ∂ -constant.

Let us denote by A_n the ring $F[x_1, x_2, \ldots, x_n]$ of polynomials. Then the Jacobian $J(f_1, f_2, \ldots, f_n)$ is a derivation in any argument.

LEMMA 3: If $\partial(h) = J(f_1, f_2, \dots, f_{n-1}, h)$ is a nonzero locally nilpotent derivation of A_n and $g_1, g_2, \dots, g_{n-1} \in A_n^\partial$, then the derivation $\partial_{n-1}(h) = J(g_1, g_2, \dots, g_{n-1}, h)$ is also locally nilpotent.

Proof: It is clear from the definition of ∂ that all $f_i \in A_n^{\partial}$. We may assume that the $\{g_i\}$ are algebraically independent because otherwise ∂_{n-1} is zero. Under this

assumption one of the standard proofs for the basis theorem in linear algebra can be used (the so-called *replacement* proof).

Let us show that $a\partial = a_{n-1}\partial_{n-1}$ for some $a, a_{n-1} \in A_n^\partial > 0$. It is clear that the $\{f_i\}$ are algebraically independent, and since the transcendence degree of A_n is n it follows from Lemma 1 that the transcendence degree of A_n^∂ is n-1. So any n elements of A_n^∂ are algebraically dependent. Let P_1 be an irreducible polynomial from A_n for which $P_1(f_1, f_2, \ldots, f_{n-1}, g_1) = 0$. We may assume up to renumbering the $\{f_i\}$ that P_1 depends on f_1 . Then

$$0 = J(P_1, f_2, \dots, f_{n-1}, h)$$

= $J(f_1, f_2, \dots, f_{n-1}, h) \frac{\partial P_1}{\partial f_1} + J(g_1, f_2, \dots, f_{n-1}, h) \frac{\partial P_1}{\partial g_1}.$

So derivations ∂ and ∂_1 , where $\partial_1(h) = J(g_1, f_2, \ldots, f_{n-1}, h)$, are proportional with coefficients from A_n^∂ which are not zeros with our choice of P_1 . Now we may assume that $\partial_i(h) = J(g_1, g_2, \ldots, g_i, f_{i+1}, \ldots, f_{n-1}, h)$ is a nonzero derivation and that ∂_i and ∂ are proportional over A_n^∂ . Let us consider an irreducible polynomial P_{i+1} for which $P_{i+1}(g_1, g_2, \ldots, g_i, f_{i+1}, \ldots, f_{n-1}, g_{i+1}) = 0$. Since the elements $g_1, g_2, \ldots, g_i, f_{i+1}, \ldots, f_{n-1}$ are algebraically independent, such a polynomial exists and since the elements $\{g_i\}$ are algebraically independent this polynomial depends on at least one of the f's. So up to renumbering we can replace f_{i+1} by g_{i+1} and obtain ∂_{i+1} , which is not zero and proportional to ∂_i over A_n^∂ . This proves the lemma.

Remark: As we can see from the proof the derivations ∂ and ∂_{n-1} have the same constants and even induce the same degree function, provided $g_1, g_2, \ldots, g_{n-1}$ are algebraically independent.

Let A be a ring with Z filtration $\{A_i\}$ and let ∂ be a derivation on A for which $\partial(A_i) \subset A_{i+k}$ for a fixed k and all i. Let $\operatorname{Gr}(A) = \bigoplus A_i/A_{i-1}$ be the corresponding graded ring and let $h \in A_i/A_{i-1}$. Let us write $h = a + A_{i-1}$ where $a \in A_i$. We can define a homomorphism ∂_1 on $\operatorname{Gr}(A)$ which acts on h by $\partial_1(h) = \partial(a) + A_{i+k-1} \in A_{i+k}/A_{i+k-1}$ and then extend ∂_1 on $\operatorname{Gr}(A)$ by linearity. It is clear that ∂_1 is a derivation of $\operatorname{Gr}(A)$.

LEMMA 4: If ∂ is a locally nilpotent derivation on A then ∂_1 is a locally nilpotent derivation on Gr(A).

Proof: Let us denote by gr the natural mapping of A into Gr(A). Let $a \in A$. It is clear that either $\partial_1(gr(a)) = 0$, which means that $a \in A_i$ and $\partial(a) \in A_{i+k-1}$

for some *i*, or $\partial_1(\operatorname{gr}(a)) = \operatorname{gr}(\partial(a))$, which means that $a \in A_i$ and $\partial(a) \in A_{i+k}$ for some *i*. Iterating this computation we see that either $\partial_1^n(\operatorname{gr}(a)) = 0$ or $\partial_1^n(\operatorname{gr}(a)) = \operatorname{gr}(\partial^n(a))$. Since ∂ is locally nilpotent it implies that ∂_1 is locally nilpotent on all elements from $\operatorname{gr}(A)$ and therefore on $\operatorname{Gr}(A)$.

3. Technical lemmas

LEMMA 5: Let y_1, y_2, \ldots, y_n be a set of elements in $A_{n-1} = F[x_1, x_2, \ldots, x_{n-1}]$ which generate A_{n-1} and let P be an irreducible polynomial relation between y's. Let P_i be the corresponding partial derivatives of P and J_i be the Jacobians of y_1, y_2, \ldots, y_n with y_i skipped. Then $J_i = (-1)^i c P_i$ where c is a nonzero element of the ground field F.

Proof: Since each x_i can be expressed as a polynomial of y's it is clear that $1 = J(x_1, x_2, \ldots, x_{n-1})$ belongs to the ideal generated by J_1, J_2, \ldots, J_n . So we see that these Jacobians are relatively prime. Therefore we may assume without loss of generality that $J_1 \neq 0$. As in the proof of Lemma 3, by computing $J(y_2, \ldots, y_{i-1}, P, y_{i+1}, \ldots, y_n) = 0$ we obtain a relation $P_i J_1 + (-1)^i P_1 J_i = 0$. So J_1 must divide P_1 and $P_i = (-1)^i dJ_i$ where $-d = P_1/J_1$. It remains to show that P_1, P_2, \ldots, P_n are relatively prime. (It should be obvious for a geometer.) Let us consider $A_n = F[Y_1, Y_2, \ldots, Y_n]$. Then the factor ring $A_n/(P)$, where $P = P(Y_1, Y_2, \ldots, Y_n)$, can be mapped onto A_{n-1} by $Y_i \rightarrow y_i$ and this mapping is an isomorphism since P is irreducible and the mapping is onto. Let $X_1, X_2, \ldots, X_{n-1}$ be any preimages of $x_1, x_2, \ldots, x_{n-1}$. Then we can write $Y_i = f_i + Pg_i + P^2h_i$ where f_i and g_i are polynomials in X's. Therefore $1 = J(Y_1, Y_2, \ldots, Y_n) \equiv \sum_{i=1}^n g_i J(f_1, \ldots, f_{i-1}, P, f_{i+1}, \ldots, f_n) \pmod{P}$. But $J(f_1, \ldots, f_{i-1}, P, f_{i+1}, \ldots, f_n) = a_i J(X_1, X_2, \ldots, X_{n-1}, P)$ where $a_i \in A_n$. So

$$J(X_1, X_2, \dots, X_{n-1}, P) \sum_{i=1}^n g_i a_i \equiv 1 \pmod{P}$$

and since $J(X_1, X_2, \ldots, X_{n-1}, P)$ is a linear combination of P_i 's they are relatively prime mod P as elements of A_n . So their images in A_{n-1} are relatively prime. This means that d is a nonzero element of the ground field.

Remark: We may assume that d = 1 since we can replace the x's by another set of generators.

LEMMA 6: Let $F_n = F(x_1, x_2, ..., x_n)$. Assume that we have a degree function deg on F_n given by deg $(x_i) = d_i$ where $d_i \in \mathbb{Z}$ and the corresponding \mathbb{Z} filtration. Let B be a subring of F_n which contains m algebraically independent elements. Then Gr(B) contains m algebraically independent elements.

Proof: Let us denote by gr(a) the image of a in $Gr(F_n)$. Let us take a maximal possible set of elements $a_1, a_2, \ldots, a_k \in B$ for which the elements $gr(a_i)$ are algebraically independent. If k = m the lemma is proved. Otherwise let us take an element $a_{k+1} \in B$ and elements $a_{k+2}, \ldots, a_n \in F_n$ so that $J(a_1, a_2, \ldots, a_n) \neq 0$. Let us introduce a function def on B > 0 by $def(r) = deg(r) - deg(J(a_1, a_2, \ldots, a_k, r, a_{k+2}, \ldots, a_n))$. This function is not identically ∞ on B and is bounded from below by $\sum_{i \neq k+1} (d_i - deg(a_i)) + d_{k+1}$ since $deg(J(a_1, a_2, \ldots, a_k, r, a_{k+2}, \ldots, a_n)) \leq \sum_{i \neq k+1} (deg(a_i) - d_i) + deg(r) - d_{k+1}$. So we can find its minimum on B, say, at element s.

The elements $gr(a_1), \ldots, gr(a_k), gr(s)$ are algebraically dependent. So there exists a polynomial Q for which $Q(gr(a_1), \ldots, gr(a_k), gr(s)) = 0$. We may assume that it has minimal possible degree relative to the last variable. This degree is positive since $gr(a_1), \ldots, gr(a_k)$ are algebraically independent.

Let $t = Q(a_1, \ldots, a_k, s)$. Clearly $t \neq 0$ (the elements a_1, \ldots, a_k, s are algebraically independent since $J(a_1, a_2, \ldots, a_k, s, a_{k+2}, \ldots, a_n) \neq 0$). Now

$$def(t) = deg(t) - deg(\frac{\partial Q}{\partial s}J(a_1, a_2, \dots, a_k, s, a_{k+2}, \dots, a_n))$$

= def(s) + deg(t) - (deg($\frac{\partial Q}{\partial s}$) + deg(s)).

So if we show that $\deg(\frac{\partial Q}{\partial s}) + \deg(s) > \deg(t)$ we will get a contradiction because then $\operatorname{def}(t) < \operatorname{def}(s)$.

Let us present $Q(a_1, \ldots, a_k, s)$ as the sum of monomials: $Q(a_1, \ldots, a_k, s) = \sum_i m_i$ where i is a multi-index. As usual let $A_d = \{f \in F_n | \deg(f) \leq d\}$. Let us choose minimal d for which A_d contains $\operatorname{gr}(m_i)$ for all monomials in Q. Then the condition $Q(\operatorname{gr}(a_1), \ldots, \operatorname{gr}(a_k), \operatorname{gr}(s)) = 0$ means that $t = Q(a_1, \ldots, a_k, s)$ belongs to A_{d-1} and so $\operatorname{deg}(t) < d$. Our choice of Q also implies that

$$\frac{\partial Q}{\partial s}(\operatorname{gr}(a_1),\ldots,\operatorname{gr}(a_k),\operatorname{gr}(s))\neq 0.$$

It is clear now that the monomials in $\frac{\partial Q}{\partial s}$ belong to $A_{d-\deg(s)}$ and

$$\deg(\frac{\partial Q}{\partial s}(a_1,\ldots,a_k,s)) = d - \deg(s).$$

Therefore $\deg(\frac{\partial Q}{\partial s}(a_1,\ldots,a_k,s)) + \deg(s) = d > \deg(t)$. This contradiction shows that k = m.

Remark: It is clear from the proof that an element a_1 can be chosen arbitrarily in $B \searrow F$.

4. Application

We are going to check now that for the polynomial $P = x + x^2y + z^2 + t^3$ the factor ring $R = \mathbb{C}[x, y, z, t]/(P)$ is not isomorphic to a polynomial ring in three variables. The ring R can be identified with a subring of the field $\mathbb{C}_3 = \mathbb{C}(x, z, t)$ generated by x, z, t and $(x + z^2 + t^3)x^{-2}$. We'll be using this identification.

Let us assume that R is $\mathbb{C}[u, v, w]$ for some $u, v, w \in \mathbb{C}_3$. Then $J_{u,v,w}(x, z, t) = x^2$ by Lemma 5 and, by the chain rule, $J_{u,v,w}(f, g, h) = x^2 J_{x,z,t}(f, g, h)$. So from now on all Jacobians without subscripts will be relative to x, z, and t.

Each element $r \in R$ is a Laurent polynomial in x with coefficients in $\mathbb{C}[z, t]$. Let us introduce a degree function on \mathbb{C}_3 by $\deg(x) = -1$ and $\deg(z) = \deg(t) = 0$. This function induces a filtration on \mathbb{C}_3 .

LEMMA 7: If $f,g \in R$ and $\partial(h) = x^2 J(f,g,h)$ is a locally nilpotent nonzero derivation on R, then $\deg(f) \leq 0$ and $\deg(g) \leq 0$.

Proof: We may assume that $\deg(f) > 0$. Then $\operatorname{gr}(f) = (\operatorname{gr}(y))^n x^m f_1(z, t)$ where $\operatorname{gr}(y) = (z^2 + t^3)x^{-2}$, and n > 0, $m \ge 0$. By Lemma 3 we could replace f and g by any two algebraically independent elements of A^∂ without changing properties of ∂ . By Lemma 6 and Remark to Lemma 6 (applied to $B = R^\partial$) we may assume by replacing g if necessary that $\operatorname{gr}(g)$ and $\operatorname{gr}(f)$ are algebraically independent. So $\partial_1(h) = x^2 J(\operatorname{gr}(f), \operatorname{gr}(g), h)$ is a non-trivial derivation on $\operatorname{Gr}(R)$ which is locally nilpotent on $\operatorname{Gr}(R)$ by Lemma 4 (with k = -1). Since $\partial_1(\operatorname{gr}(f)) = 0$, by Lemma 2, $\partial_1(\operatorname{gr}(y)) = \partial_1(x^m) = \partial_1(f_1) = 0$.

If m > 0 then $\partial_1(x) = 0$ and in this case $\partial_1(z^2 + t^3) = 0$. But then $\partial_2(h) = x^2 J(x, z^2 + t^3, h)$ is also a nilpotent derivation on $\operatorname{Gr}(R)$ (see Lemma 3 again). This would imply that $\partial_3(h) = J_{z,t}(z^2 + t^3, h)$ is a locally nilpotent derivation on $\mathbb{C}[z, t]$. Since $\partial_3(z) = -3t^2$ and $\partial_3(t) = 2z$, the degrees of z and t induced by this derivation should satisfy $\operatorname{deg}(z) - 1 = 2\operatorname{deg}(t)$ and $\operatorname{deg}(t) - 1 = \operatorname{deg}(z)$. Hence $\operatorname{deg}(z) = -3$ and $\operatorname{deg}(t) = -2$ which is impossible.

So we may assume that m = 0 and that gr(g) is also not divisible by x because otherwise $\partial_1(x) = 0$ and it would imply as above that ∂_2 is locally nilpotent.

C³-LIKE THREEFOLD

Therefore $\operatorname{gr}(g) = \operatorname{gr}(y)^k g_1(z,t)$. If $f_1, g_1 \in \mathbb{C}$ then $\operatorname{gr}(f)$ and $\operatorname{gr}(g)$ are dependent contrary to our assumption. So one of them is not in \mathbb{C} . Let us denote it by f_2 . By Lemma 3, $\partial_2(h) = x^2 J(\operatorname{gr}(y), f_2, h)$ is a nilpotent derivation of $\operatorname{Gr}(R)$.

Let us denote Gr(R) by S and introduce a new degree function on S by deg(x) = 0, deg(z) = 3, and deg(t) = 2. To distinguish the filtration which corresponds to this function from the previous one let us use the notations Gr_1 and gr_1 .

If we define $\partial_3(h) = x^2 J(\operatorname{gr}(y), \operatorname{gr}_1(f_2), h)$, it is a nonzero derivation on $\operatorname{Gr}_1(S)$ which is locally nilpotent by Lemma 4. Since $\operatorname{gr}_1(f_2)$ is a homogeneous form from $\mathbb{C}[z,t]$ it has as a factor either z, or t, or $z^2 + ct^3$ where $c \in \mathbb{C}$. Since $\partial_3(\operatorname{gr}_1(f_2)) = 0$ we see from Lemma 2 that either $\partial_3(z) = 0$, or $\partial_3(t) = 0$, or $\partial_3(z^2 + ct^3) = 0$. Therefore by Lemma 3 one of the derivations $\partial_4(h) =$ $x^2 J(\operatorname{gr}(y), z, h)$ or $\partial_5(h) = x^2 J(\operatorname{gr}(y), t, h)$ or $\partial_6(h) = x^2 J(\operatorname{gr}(y), z^2 + ct^3, h)$ is locally nilpotent.

Now

$$\begin{array}{ll} \partial_4(x) = -3t^2, & \partial_4(z) = 0, & \partial_4(t) = -2\operatorname{gr}(y)x; \\ \partial_5(x) = 2z, & \partial_5(z) = 2\operatorname{gr}(y)x, & \partial_5(t) = 0; \\ \partial_6(x) = 6(c-1)zt^2, & \partial_6(z) = 6c\operatorname{gr}(y)xt^2, & \partial_6(t) = -4\operatorname{gr}(y)xz \end{array}$$

and we may assume that $c \neq 0$ and that $c \neq 1$.

Let us denote by d_x , d_z , and d_t the degrees of x, z, and t induced by these derivations. Then taking into account that the degree of gr(y) is zero, we'll obtain correspondingly:

$$\begin{aligned} &d_x - 1 = 2d_t, & d_z = 0, & \text{and } d_t - 1 = d_x; \\ &d_x - 1 = d_z, & d_z - 1 = d_x, & \text{and } d_t = 0; \\ &d_x - 1 = d_z + 2d_t, & d_z - 1 = d_x + 2d_t, & \text{and } d_t - 1 = d_x + d_z \end{aligned}$$

These systems do not have nonnegative solutions, so these derivations are not locally nilpotent.

This finishes the proof of the lemma.

LEMMA 8: If $\partial(h) = x^2 J(f, g, h)$ is a locally nilpotent nonzero derivation on R then $\partial(x) = 0$.

Proof: Since $f, g \in \mathbb{C}[x, z, t]$ by the previous lemma, $\partial(h)$ is a locally nilpotent nonzero derivation on $\mathbb{C}[x, z, t]$. If deg is the degree function induced by this

derivation and $\partial(h) \neq 0$ then $\deg(\partial(h)) \geq 2 \deg(x)$. So $\deg(x)$ must be equal to zero.

To get the final contradiction let us use again Jacobians relative to u, v, and w. It is clear that each of the derivations $\partial_1(h) = J(u, v, h)$, $\partial_2(h) = J(u, w, h)$, and $\partial_3(h) = J(w, v, h)$ is nonzero and locally nilpotent and that only complex numbers are common constants of these derivations. Since $x \notin \mathbb{C}$ our assumption that $R = \mathbb{C}[u, v, w]$ is wrong.

Added in proofs: The author found out that Lemma 2 appeared as Lemma 2 in the paper of M. Ferrero, Y. Lequian and A. Nowicki, A note on locally nilpotent derivations, Journal of Pure and Applied Algebra **79** (1992), 45–50.

References

- [A] S. Abhyankar, On semigroup of a meromorphic curve, Tokyo, Kinokuniya Book-Store, 1978.
- [C] P. Cohn, Free Rings and Their Relations, second edition, Academic Press, New York, 1985.
- [D] A. Dimca, Hypersurfaces in \mathbb{C}^{2n} diffeomorphic to \mathbb{R}^{4n-2} $(n \ge 2)$, Max-Plank Institute, preprint, 1990.
- [G] A. Gutwirth, The action of an algebraic torus on the affine plane, Transactions of the American Mathematical Society 105 (1962), 407–414.
- S. Iitaka, On Kodaira logarithmic dimension of algebraic varieties, in Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 1977, pp. 175–189.
- [K1] S. Kaliman, Smooth contractible hypersurfaces in \mathbb{C}^n and exotic algebraic structures on \mathbb{C}^3 , Mathematische Zeitschrift **214** (1993), 499–510.
- [K2] S. Kaliman, Exotic structures on Cⁿ and C^{*}-actions on C³, in Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Vol. 173 (V. Ancona, E. Ballico and A. Silva, eds.), Marcel Dekker, New York-Basel-Hong Kong, 1995, pp. 299–307.
- [K3] S. Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel Journal of Mathematics 88 (1994), 411–423.
- [KML1] S. Kaliman and L. Makar-Limanov, On some family of contractible hypersurfaces in C⁴, Seminaire d'algèbre. Journées Singulières et Jacobiénnes 26–28 mai 1993, Prépublication de l'Institut Fourier, Grenoble, 1994, pp. 57–75.

- [KML2] S. Kaliman and L. Makar-Limanov, Affine algebraic manifolds without dominant morphisms from euclidean spaces, to appear in the Rocky Mountain Journal of Mathematics.
- [Ka1] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group actions on an affine space, Journal of Algebra 60 (1979), 439-451.
- [Ka2] T. Kambayashi, On Fujita's strong cancellation theorem for the affine space, Journal of the Faculty of Science of the University of Tokyo 23 (1980), 535– 548.
- [KR] M. Koras and P. Russell, On linearizing "good" C^{*}-action on C³, Canadian Mathematical Society Conference Proceedings 10 (1989), 93-102.
- [K] H. Kraft, Algebraic automorphisms of affine spaces, in Topological Methods in Algebraic Transformation Groups (H. Kraft et al., eds.), Progress in Mathematics, Volume 80, Birkhäuser Verlag, Basel-Boston, 1989, pp. 81-105.
- [MS] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, Journal of Mathematics of Kyoto University 20 (1980), 11-42.
- [R1] P. Russell, On a class of \mathbb{C}^3 -like threefolds, Preliminary Report, 1992.
- [R2] P. Russell, On affine-ruled rational surfaces, Mathematische Annalen 255 (1981), 287–302.
- [S] A. Sathaye, On linear planes, Proceedings of the American Mathematical Society 56 (1976), 1–7.
- [Sc] G. Schwarz, Exotic algebraic group actions, Comptes Rendus de l'Académie des Sciences, Paris 309 (1989), 89–94.